Columbia University Electrical & Mechanical Engineering Departments

EEME E6601 – Introduction to Control Theory Fall Semester 2023 – Mudd 833

Professor: Nicolas W. Chbat, PhD Teaching Assistants: V. Gonzalez, D. Nasilowski Course Assistants: Y. Li, Z. Wu, S. Yarlagadda

	High-Level Syllabus	
Section	Topic	Weeks
I	Analysis of Continuous-time Feedback Systems	3
II	Continuous-Time Controller <i>Design</i> in the Frequency Domain	3
III	Discrete-Time Feedback Systems (Digital Control)	7
	Detailed Syllabus	
Week	Торіс	Hours
1	Modeling, ODE, Transfer Function, Command & Disturbance	3
	Responses, Simulink	
2	Steady-State Error, Root Locus Analysis	3
3	Z-transform, Sampling, Zero-order Hold, A/D & D/A converters	3
4	Routh & Jury Stability Criteria, Bode Diagram	3
5	Frequency-domain Controller Design, Relative & Absolute Stability	3
6	Digital Controller Representation, Difference Eqn Solution	3
7	Closed-loop System Performance, Nyquist Plot	3
8	Sampled-data Control Systems, "Longman Equivalence"	3
9	State-Space Formulation, Pole Placement	3
10	State Observer Design	3
11	Continuous to Discrete Conversion, Controllability, Observability	3
12	Digital Controller & Observer Design, Implementation	3
13	LQR (linear quadratic regulator), MPC (model predictive control)	3
14	Review	3
Extra	Lab session: Controls experiment	2

Grade:

 Homework:
 33%

 Exam 1:
 22%

 Exam 2:
 45%

 Total:
 100%

Textbooks (on reserve in Library):

- **1. Ogata,** *Modern Control Engineering* (on reserve)
- **2.** Frederick, Chow Feedback Control Problems Using Matlab (on reserve)
- **3.** Chow, Frederick, Chbat Discrete-Time Control problems using Matlab (on reserve)

Rationale: Designing a control system and implementing it on a digital system is a control engineer's task. Necessary methodologies like modeling and system identification accompany controller design. A good grasp of classical and modern control analysis & synthesis are fulcrum to modern engineering systems.